【洛谷】P1044 [NOIP2003 普及组] 栈(巧妙递推)

一、题目:

[NOIP2003 普及组] 栈

题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述

宁宁考虑的是这样一个问题:一个操作数序列,$1,2,\ldots ,n$(图示为 1 到 3 的情况),栈 A 的深度大于 $n$。

现在可以进行两种操作,

  1. 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
  2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3 生成序列 2 3 1 的过程。

(原始状态如上图所示)

你的程序将对给定的 $n$,计算并输出由操作数序列 $1,2,\ldots,n$ 经过操作可能得到的输出序列的总数。

输入格式

输入文件只含一个整数 $n$($1 \leq n \leq 18$)。

输出格式

输出文件只有一行,即可能输出序列的总数目。

样例 #1

样例输入 #1

3

样例输出 #1

5

提示

【题目来源】

NOIP 2003 普及组第三题

二、思路:

核心:

建立数组f[n],易得f[0]=1,f[1]=1,(由于k最小为1,f(2)=f(1-1)f(2-1)+f(2-1)f(1-1),我们至少举出f(1)、f(0)),通过循环依次递推出f(n),如下:

    int f[20] = {0};
    f[0] = 1;
    f[1] = 1;
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            f[i] += f[j - 1] * f[i - j];
        }
    }

三、源码:

#include <iostream>
using namespace std;

int main() {
    int n;
    cin >> n;

    int f[20] = {0};
    f[0] = 1;
    f[1] = 1;
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            f[i] += f[j - 1] * f[i - j];
        }
    }
    cout << f[n];

    return 0;
}

欢迎改正与补充

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇